|
|
|
ВСЕ НОВОСТИ
| ПОЛИТИКА И ОБЩЕСТВО
| ЭКОНОМИКА
| HI-TECH |
E-BUSINESS |
ПРОИСШЕСТВИЯ
| НОВОСИБИРСК
| ШОУ-БИЗНЕС |
Новости / Новосибирск / Научное подземелье: как работает сибирский коллайдер
![]()
Фото: © Владимир Сараев, Sibnet.ru Научное подземелье: как работает сибирский коллайдерВнутри обычного с виду здания Института ядерной физики скрываются сразу два коллайдера — меньшие «братья» Большого адронного коллайдера (БАК), объем только материальных вложений в которые исчисляется сотнями миллионов рублей. А первый коллайдер в Новосибирске появился еще в 60-х годах прошлого века… Коллайдер — ускоритель заряженных частиц (с английского collider от collide – сталкиваться). Принцип устройства электронно-позитронных ускорителей одинаков, хотя коллайдеры и имеет некоторые различия. ![]() ОДНИ ИЗ ПЕРВЫХ Всемирно известный Большой адронный коллайдер построили в 2008 году, в новосибирском Академгородке коллайдер появился еще в 60-е годы. Первый ускоритель ВЭП-1 сибирские физики построили, чтобы доказать то, во что многие не верили — пучки частиц можно сталкивать друг с другом. До этого были только линейные ускорители, работающие по типу пушки, стреляющей частицами по мишени-веществу. Почти одновременно подобные эксперименты проводили в США, поэтому точно установить автора коллайдера нельзя. Изобретенный в 60-е годы принцип столкновения частиц лежит в основе работы БАК. ![]() «За счет встречных пучков сократились затраты на ускорение частиц и электричество. Это можно сравнить с тем, что, если одна машина едет со скоростью 100 километров в час и стакивается со стеной или две машины с такой же скоростью едут и сталкиваются друг другом. Суммарная энергия во втором случае будет больше», — рассказывает научный сотрудник ИЯФ СО РАН Леонид Эпштейн. Сейчас часть ВЭП-1 стоит как музейный экспонат в коридоре на пути к одному из двух нынешних ускорителей частиц в ИЯФе. ВЭП-2000 проработал с 2009 по 2013 год, а сейчас находится на модернизации. Ускоритель размещен в большой комнате с высокими потолками, обстановка в которой напоминает фантастические советские фильмы: опутанная проводами огромная установка, половину которой можно увидеть только поднявшись на лестницу. До того, как построили инжекционный комплекс ВЭПП-5, пучки частиц производили в большой «бочке» — резонаторе. Он проработал в ИЯФ около 40 лет. Его решили заменить на инжекционный комплекс, который может «раздавать» частицы на оба коллайдера. ![]() «В месте, где пучок передавался от резонатора на кольцо, встроили подземный канал от ВЭПП-5. Вслед за заменой источника частиц решили модернизировать ускоритель, так как инжекционный комплекс дает пучки с большим количеством частиц, чем резонатор и потребовалась модернизация магнитов. Их разбирали, шлифовали, что-то снимали, наращивали, чтобы изменить конфигурацию полей для работы с большим количеством частиц в одном пучке», — объясняет физик. Модернизацию коллайдера планировали завершить раньше, но из-за кризиса она продлилась на 2,5 года. В марте ВЭПП-2000 планируют снова запустить. ![]() ДВА КОЛЬЦА Пучки электронов и позитронов сначала попадают на первое кольцо, где под действием СВЧ-волн разгоняются до нужной скорости. Затем по каналу они попадают на второе кольцо. В нем частицы по дуге разветвляют на два направления. Позитроны начинают двигаться по часовой стрелке, а электроны против часовой. Два детектора, похожих на огромные металлические цилиндры — места столкновения частиц. «Сферический нейтральный детектор не имеет своего магнитного поля, частицы в нем летят по прямой линии. Внутри у него дрейфовая камера — это многопроволочная система, наполненная газом. Когда частица пролетает — регистрируются координаты. Затем частицы попадают в колориметры — это системы, которые регистрируют энергию частиц», — рассказывает Эпштейн. Первый детектор фиксирует нейтральные частицы, а второй — криогенный магнитный детектор —определяет и нейтральные, и заряженные. По словам ученого, КМД имеет магнитное поле на внутренней части детектора и по тому как частицы закручиваются в магнитном поле можно определить какие из них нейтральные, а какие заряженные. «Магнит охлаждается жидким гелием, потому что он является сверхпроводником, а они не работают при комнатной температуре. Их надо охлаждать до температуры примерно минус 270 градусов по Цельсию, что делается с помощью жидкого гелия», — говорит собеседник. После столкновения происходит рождение новых частиц, которые регистрирует детектор. Он также измеряет координаты, импульс, энергию, которыми обладают частицы. «Это лазер для измерения энергии частиц в пучке. Он стоит здесь и выводится зеркалами на вверх к ускорителю. Он светит по частицам, они отражаются и так измеряется энергия пучка», — объясняет ученый. В комнате находится странный овальный предмет с надписью: «Не трогать! Идут измерения!». Это датчик, фиксирующий уровень радиации. Данные таких датчиков собирает специальный отдел радиационной безопасности, их, по словам Эпштейна, в последствии проверяет ФСБ. «В момент работы коллайдера возле него нельзя находится людям, так как при столкновении пучков появляются другие частицы и излучается радиация. Флюорографию можно делать раз в год, возле работающей установки можно каждый день дозу флюорографии получать», — объясняет собеседник. Еще одна комната, связанная с ускорителями — пультовая. В ней на множество компьютеров выводятся данные с коллайдеров, а на рабочее место дежурного — видео со всех камер, установленных возле установок. Учитывая повышенные риски, включая радиационные, дежурные наблюдают за ускорителями 24 часа в сутки, на изображениях с камер они могут заметить какие-то неполадки и экстренно отключить всю систему с помощью панели с рядом красных кнопок. ![]() РАЗМЕР ИМЕЕТ ЗНАЧЕНИЕ Быстро отключить ускорители можно только в чрезвычайной ситуации, в штатном режиме этот процесс занимает несколько дней. Неделю занимает и запуск коллайдера. «Сначала надо, чтобы из всех труб был откачан воздух для создания вакуума, затем надо охладить большие магниты жидким гелием и азотом. А потом уже нажать кнопку включения, которая больше похожа на enter на компьютерной клавиатуре. Движение пучка частиц управляется магнитным полем, которое нужно настроить так, чтобы пучок ровно шел в трубе и не ударялся об стенки», — говорит Эпштейн. В штатном режиме коллайдеры включают в середине октября, и они работают до конца июня. Летом их отключают из-за жары и отпусков сотрудников. ![]() Пока ВЭПП-2000 модернизируют, ВЭПП-4м активно работает. Он имеет размер почти с футбольное поле и связан с первым коллайдером тоннелем длиной в 150 метров. Большой ускоритель имеет точно такое же строение и принцип работы, но за счет размера выполняет другие задачи. На ВЭПП-4м изучаются свойства очарованных мезонов и тау-лептона. «От размера ускорителя зависит число экспериментов, которые можно поставить на нем. На ВЭПП-2000 можно проводить два эксперимента, на ВЭПП-4м около пяти-шести. Кроме того, он имеет другой диапазон энергии. Если у ВЭПП-2000 энергия до 2 Гигаэлектронвольт, то на ВЭПП-4 в несколько раз больше энергии», — объясняет собеседник. ![]() Потребляемая мощность каждого из коллайдеров и сопутствующей инфраструктуры зависит от режима работы и составляет несколько мегаватат, в сумме — до 10 МВт. Объем ежегодных расходов института на содержание и эксплуатацию коллайдеров превышает полмиллиарда рублей. По словам ученого, у каждого детектора своя физическая программа. Так, на детекторе ВЭПП-2000 изучают андронные сечения, протоны, нейтроны. Особенностью ВЭПП-2000 является то, что на нем проводят эксперименты в областях малой энергии. Изучение протонов на ВЭП-2000 дало информацию для управления этими частицами на Большом андронном коллайдере. На каждом детекторе работает группа примерно из 30 человек, это не только ученые, но и техники, монтажники. В сумме на всей установке трудится около 100 человек. Но, как отметил Эпштейн, это не так много — всего в ИЯФе работает около 3 тысяч человек, из них научных сотрудников около 600. ![]() Фото: © Наталья Купина, предоставлено ИЯФ Почти 2 тысячи человек работают на производственной площадке института, где и собирают все детали и оборудование для ускорителей и других установок ИЯФ. Сотрудники именно этого института сделали оборудование для трети кольца Большого андронного коллайдера. На вопрос об опасности возникновения «черных дыр» из-за работы ускорителей ученый улыбается. «Дыра образуется от энергии взрыва больших звёзд. А до энергии звезд ускорителям идти еще многие тысячи лет. Даже на БАК энергии частиц протонов не хватит для этого», — говорит Эпштейн. ![]() Опыт работы на двух коллайдерах ученые планируют использовать для создания еще более мощного — «Супер чарм-тау фабрики». Для нее построили инжекторный комплекс ВЭПП-5. Будущий коллайдер будет отличаться высокой светимостью — количеством частиц, сталкивающихся в установке за единицу времени. Он будет источником очарованных частиц (кварков) и тау-лептонов, почему и получил название «фабрика». Стоимость его создания около 17 миллиардов рублей. Но пока средств на реализацию этого грандиозного проекта у института нет. ![]() Ежегодно 8 февраля отмечается День российской науки, учрежденный указом президента РФ в 1999 году. В Указе говорится, что праздник установлен «учитывая выдающуюся роль отечественной науки в развитии государства и общества, следуя историческим традициям и в ознаменование 275-летия со дня основания в России Академии наук». Именно 8 февраля в 1724 году по распоряжению Петра I в России была основана Академия наук.
Дата: 08.02.2016, 1:56, Источник: Схожие новости по теме:
|
РЕСУРСЫ РАЗДЕЛА
Далее: Карта раздела |
2025, SWEET211.RU | Сделано с любовью Автор: Maksim Semeykin ![]() Дизайн: Master Daemon Web Builder Engine v.2.78c, 2004-2025 |
Страница создана за 0,031 секунд
|
Сейчас: 04.04.2025, 0:57 |